

Aqueduct Pximary School Maths Calculation Policy

> This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further material added. It is a working document and will be revised and amended, as necessary. This is particularly important as we progress through our Teaching for Mastery journey. Different variations have been included to provide teachers with a range of tools to support pupils in their grasp of number and calculation. To ensure consistency for pupils, it is important that that the mathematical language used in maths lessons reflects the vocabulary used throughout this policy.

Our Strapline

Building tomorrow, Leading the way.

Our Values

Positivity, happiness, learning, kindness, safety \& respect.

Addition

Year 1
Year 2
Year 3
Year 4+

Subtraction
Year 1
Year 2
Year 3
Year 4+

Addition
$\not+$

Addition Year 1			
Objective / Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model	Use part, part whole model. Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	$8=5+3$ $5+3=8$ 5 3 Use the part-part-whale diagram as shown above to move into the abstract. Include missing number questions to support varied fluency: $\begin{aligned} & 8=?+3 \\ & 5+?=8 \end{aligned}$

Addition Year 1			
Objective / Strategy	Concrete	Pictorial	Abstract
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10. This is an essential skill for column addition later.	$6+5=11$ Start with the bigger number and use the smaller number to make 10. Use ten frames. Use Rekenreks.	Use pictures or a number line. Regroup or partition the smaller number using the part, part whole model to make 10 . $9+5=14$	$7+4=11$ If I am at seven, how many more do I need to make 10? How many more do I add on now?

Addition Year 1			
Objective / Strategy	Concrete	Pictorial	Abstract
Represent \& use number bonds and related subtraction facts within 20	2 more than 5.		Include missing number questions: $\begin{aligned} & 8=?+3 \\ & 5+?=8 \end{aligned}$ Emphasis should be on the language 'I more than 5 is equal to 6.' '2 more than 5 is 7.' ' 8 is 3 more than 5.'

Addition			
Year 2			
Objective / Strategy	Concrete	Pictorial	Abstract
Adding multiples of ten.	$50=30=20$ Model using dienes and bead strings.	Use representations for base ten.	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+-=60 \end{aligned}$
Use known number facts. Part-partwhole	Children explore ways of making numbers within 20.	$\begin{gathered} 20 \\ \square+\square=20 \\ \square+\square=20 \\ \square=\square \\ \square=\square \end{gathered}$	Explore commutativity of addition by swapping addends to build a fact family. Explore the concept of the inverse relationship of addition and subtraction and use this to check calculations, $\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$

Addition Year 2											
Objective／ Strategy	Concrete	Pictorial	Abstract								
Using known facts．		$\begin{aligned} \because+\because & =\therefore \\ \\|\\|+\\|\\| & =\\| \\|\\| \\| \\ \square \square+日 日 & =\text { 昌昌昭 } \end{aligned}$ Children draw representations of H, T and O	$3+4=7$ Leads to $30+40=70$ Leads to $300+400=700$								
Bar Model	$3+4=7$	$7+3=10$	$23 \quad 25$ $23+25=48$								

Addition Year 2			
Objective / Strategy	Concrete	Pictorial	Abstract
Add a twodigit number and ones	$17+5=22$ Use tens frames to make ten. Children explore patterns. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Use part-part whole and number line to model. Other variations of the above accepted.	$17+5=22$ Explore related facts.$\begin{array}{r} 17+5=22 \\ 5+17=22 \\ 22-17=5 \\ 22-5=17 \end{array}$22 17 5 Lead into recording in column format to reinforce place value and prepare children for formal written methods with larger values
Add a twodigit number and tens	$\begin{aligned} & \text { 25 }+10=35 \end{aligned}$ Explore that the ones digit does not change.		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\ldots=57 \end{aligned}$

Addition Year 2			
Objective / Strategy	Concrete	Pictorial	Abstract
Add two twodigit numbers	AB Model using dienes, place value counters and numicon.	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 20+5 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$
			Lead into recording in column format, to reinforce place value and prepare children for formal written methods with larger values.
Add three one -digit numbers	Combine to make 10 first if possible or bridge 10 then add third digit.	Regroup and draw representation.	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/bridge ten then add on the third.

Addition Year 3			
Objective / Strategy	Concrete	Pictorial	Abstract
Column addition (No regrouping) Add two or three two or three-digit numbers.	Using dienes. Add together the ones first, then the ters. Move to using place value counters either alongside or afterwards.	Children move to drawing the counters using a place value frame or using equivalent practical equipment. Other objects and equipment may be used to reinforce objective.	$\begin{array}{r} 237+114= \\ 237 \\ +114 \end{array}$ Add the ones (or equivalent smallest place value) first, then the ters, then the hundreds.

Aqueduct Pximary School Maths Calculation Policy

Addition Year 3			
Objective / Strategy	Concrete	Pictorial	Abstract
Estimate the answers to questions and use inverse operations to check answers	Estimating $98+17=$? $100+20=120$	Use number lines to illustrate estimation.	Building up known facts and using them to illustrate the inverse and to check answers. $\begin{array}{ll} 98+18=116 & 116-18=98 \\ 18+98=116 & 116-98=18 \end{array}$

Addition Year 4-6				
Objective / Strategy	Concrete		Pictorial	Abstract
Y5-add numbers with more than 4 digits. Add decimals with 2 decimal places, including money.	As year 4 Introduce decimal place value counters and model exchange for addition.	$\begin{aligned} & 2.37 \\ & \text { tens } \\ & \hline \\ & 00000 \\ & 000 \end{aligned}$	$+81.79$ 6	Decimal place to be laid out in its own square to ensure clarity.
Y6-add several numbers of increasing complexity, including adding money, measure and decimals with different numbers of decimal points.	As per Year 5		As per Year 5	Insert 0 for place holders. $\begin{array}{r} 23.361 \\ 9.080 \\ 59.770 \\ +\quad 1.300 \\ \hline 93.511 \\ 21 \end{array}$

Subtraction

Subtraction Year 1			
Objective / Strategy	Concrete	Pictorial	Abstract
Taking away ones.	Use physical abjects, counters, cubes etc. to show how abjects can be taken away. $4-2=2$ $6-4=2$	Cross out drawn abjects to show what has been taken away. $15-3=12$ Stories will also be used to represent subtraction in different contexts.	$\begin{gathered} 7-4=3 \\ 16-9=7 \end{gathered}$
Counting back	Move objects away from the group, counting backwards. Move the beads along the bead string as you count backwards. Use of Rekenreks.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?

Aqueduct Pximary School Maths Calculation Policy
Last Updated: 28/2/22

Subtraction Year 1			
Objective / Strategy	Concrete	Pictorial	Abstract
Find the Difference	Compare abjects and amounts Lay objects to represent bar model.	Count on using a number line to find the difference.	Hannah has 12 sweets and her sister has 5 . How many more does Hannah have than her sister.?

Subtraction Year 1			
Objective / Strategy	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Include subtracting zero Part Part Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what s the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model. Include missing number problems: $\begin{aligned} & 12-?=5 \\ & 7=12-? \end{aligned}$

Subtraction Year 1			
Objective / Strategy	Concrete	Pictorial	Abstract
Make 10.	$14-9$ Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5.	$13-7=6$ $13-7$ Jump back 3 first, then another 4. Use ten as the stopping point.	$16-8$ How many do we take off first to get to 10 ? How many left to take off?
Bar model Including the inverse operations.	$5-2=3$		8 2$\begin{aligned} & 10=8+2 \\ & 10=2+8 \\ & 10-2=8 \\ & 10-8=2 \end{aligned}$

		Subtraction Year 2	
Objective / Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$20-4=$	$20-4=16$
Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and cross off. $43-21=22$ 13-7= $\begin{aligned} & 13-3=10 \\ & 10-4=6 \end{aligned}$	$43-21=22$

Subtraction Year 2			
Objective / Strategy	Concrete	Pictorial	Abstract
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	$34-28$ Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.	$93-76=17$

SubtractionYear 3			
Objective／ Strategy	Concrete	Pictorial	Abstract
Subtract numbers mentally， including： three digit number＋ ones three digit number＋tens three digit number＋ hundreds	角是是		Vary the position of the answer and question． Expose children to missing number questions and vary the missing part of the calculation． $\begin{gathered} 678=?-1 \\ 688-10=? \\ 678=?-100 \end{gathered}$
Column subtraction without regrouping （friendly numbers）	$47-32$ Use base 10 or Numicon to model	 Draw representations to support understanding	$\begin{gathered} 47-24=23 \\ -\frac{20+7}{20+4} \\ -20+3 \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding．

Aqueduct Pximary School Maths Calculation Policy

Subtraction Year 3			
Objective / Strategy	Concrete	Pictorial	Abstract
Column subtraction with regrouping	Begin with base 10 or Numicon. Move to pr counters, modelling the exchange of a ten into ten ones. Use the phrase 'exchange' for exchange.	Children may draw base ten or PV counters and cross off.	Begin by partitioning into PV columns $$ Then move to formal method.

Subtraction Year 4-6			
Objective / Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 - subtract with up to 4 digits. Introduce decimal subtraction through context of money	$234-179$ Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3	Use the phrase 'exchange' for exchange
Year 5- Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal Up to 3	As per year 4.	Children to draw pv counters and show their exchange-see Y3	placeholders.

Subtraction Year 4-6			
Objective / Strategy	Concrete	Pictorial	Abstract
Year 6Subtract with increasingly large and more complex numbers and decimal values (up to 3 decimal place).	As per year 4.	Children to draw pr counters and show their exchange-see Y3 (If needed)	

Multiplication

Programme of Study specifies the following objectives, however it does not require the explicit teaching of the mathematical symbol of multiplication

Multiplication Year 1			
Objective / Strategy	Concrete	Pictorial	Abstract
Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw to show $2 \times 3=6$ Draw and make representations	$2 \times 4=8$
Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve problems. prob There are 3 sweets in one bag. How many sweets are in 5 bags altogether?	$2+2+2+2+2=10$ Write addition sentences to describe objects and pictures.

Multiplication Year 1			
Objective / Strategy	Concrete	Pictorial	Abstract
Understanding arrays	Use abjects laid out in arrays to find the answers to 2 lots 5, 3 lots of 2 etc.	Draw representations of arrays to show understanding	$\begin{aligned} & 3 \times 2=6 \\ & 2 \times 5=10 \end{aligned}$

Multiplication Year 2			
Objective / Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together.

Children should be able to recall and use multiplication and division facts for the 2 , 5 and 10 times times-tables.

Multiplication Year 2			
Objective / Strategy	Concrete	Pictorial	Abstract
Counting in multiples of 2, 3, 4, 5, 10 from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples. Nambay an and 3 3 3 3	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{gathered} 0,2,4,6,8,10 \\ 0,3,6,9,12,15 \\ 0,5,10,15,20,25,30 \end{gathered}$ $4 \times 3=\square$

MultiplicationYear 2			
Objective / Strategy	Concrete	Pictorial	Abstract
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the oxder of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \quad 12=4 \times 3 \\ & \\ & \begin{array}{l} \text { Use an array to write } \\ \text { multificiction sentences and } \\ \text { reinforce repeated addition. } \\ 00000 \\ 00000 \\ 00000 \\ 5+5+5=15 \\ 3+3+3+3+3=15 \\ 5 \times 3=15 \\ 3 \times 5=15 \end{array} \end{aligned}$

Multiplication Year 2			
Objective / Strategy	Concrete	Pictorial	Abstract
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{gathered} 2 \times 4=8 \\ 4 \times 2=8 \\ 8 \div 2=4 \\ 8 \div 4=2 \\ 8=2 \times 4 \\ 8=4 \times 2 \\ 2=8 \div 4 \\ 4=8 \div 2 \end{gathered}$ Show all 8 related fact family sentences.

Aqueduct Pximary School Maths Calculation Policy

Multiplication Year 3						
Objective / Strategy	Concrete	Pictorial				
Solve problems, including missing number problems, integer scaling problems,						

Multiplication Year 4-6						
Objective / Strategy	Concrete	Pictorial				Abstract
Grid method recap from year 3 for 2-digits $\times 1$-digit. Move to multiplying 3digit numbers by 1-digit. (Year 4)	As per year 3.	As per year 3.				As per year 3 .
Column multiplication.	Children can continue to be supported by place value counters at this stage of multiplication. This is initially done where there is no regrouping. $321 \times 2=642$ It is important at this stage that they always multiply the ones first. The corresponding long multiplication is modelled alongside.	The grid show haw Bar modelli support proble along	ing and learn s with de the me	20 80 m ela me	be used to to a formal d. A] का $\times 1$ का ber lines can en solving iplication al written	327 $\times \quad 4$ 28 80 1200 1308

Aqueduct Pximary School Maths Calculation Policy
Last Updated: 28/2/22

Aqueduct Pximary School Maths Calculation Policy

Division

Aqueduct Pximary School Maths Calculation Policy

Division Year 2				
Objective / Strategy	Concrete		Pictorial	Abstract
Division as grouping	Use cubes, counters, abjects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$	Contin aid \square ?	use bar madelling to g division problems. $\begin{aligned} & 0 \div 5=? \\ & \times ?=20 \end{aligned}$	How many groups of 6 in 24? $24 \div 6=4$
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rll} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw split the multiplic	array and use lines to ay into groups to make and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $7 \times 4=28$ $\begin{aligned} & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \\ & 28=7 \times 4 \\ & 28=4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$

Aqueduct Pximary School Maths Calculation Policy
Last Updated: 28/2/22

Aqueduct Pximary School Maths Calculation Policy
Objective 1
Strategy
Divide at
least 3 digit
numbers by
digit.

			Division Year 4-6
Objective / Strategy	Concrete		Pictorial Abstract
Long Division	$\begin{array}{\|c} \hline 0 \\ 250 \\ \frac{0 \downarrow}{42} \end{array}$	$\begin{aligned} & 42 \div 25=1 \\ & \text { remainder } 17 \end{aligned}$	Divide this number by the divisor.
Subtract Bring Down	$\begin{array}{c\|c} 01 \\ 25 & 425 \\ 0 \downarrow \\ \frac{0 \downarrow}{42} \end{array}$		The whole number result is placed at the top. Any remainders are ignored at this point.
	$\begin{gathered} 01 \\ 25 \mid 425 \\ 0 \downarrow \\ \mathbf{4 2} \\ 25 \\ \hline \end{gathered}$	$25 \times 1=25$	The answer from the above operation is multiplied by the divisor. The result is placed under the last number divided into.
	$\begin{gathered} 01 \\ 25 \mid 425 \\ 0 \downarrow \\ \frac{0 \downarrow}{42} \\ \frac{25}{17} \end{gathered}$	$42-25=17$	Now we subtract the bottom number from the top number.

Aqueduct Pximary School Maths Calculation Policy

Aqueduct Pximary School Maths Calculation Policy

